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Spherical gravitational collapse with escaping neutrinos 

J KRISHNA RAOT 
Department of Mathematics, King’s College University of London, London WC2, U K  

MS received 7 July 1971 

Abstract. The general relativity equations for the dynamics of spherically symmetric perfect 
fluid distributions with an outward neutrino flux are studied. The geometrical part of the 
field equations is simplified by introducing the eigenvalue of the Weyl tensor in the 2-2 
component of the Einstein tensor. This eigenvalue is interpreted as the energy density of the 
free gravitational field which contributes to the mass m(r, t) contained within a coordinate 
radius r of the fluid sphere. It is pointed out that the presence of a free gravitational field 
produces shearing forces inside the material sphere. An energy equation which shows 
clearly how the total (fluid and radiation) pressure does work in a material sphere across its 
moving boundary is obtained. 

When the energy density of the free gravitational field vanishes (c = 0), it is shown that 
the space-time is conformally flat. Taking the interior geometry of a star to be conformally 
flat and assuming that it is filled with a perfect fluid, the following results are obtained: 
(i) the streamlines of the fluid are orthogonal to the hypersurfaces b(R, r )  = constant, 
(ii) the conservation laws are identities, (iii) the rate of contraction of a fluid sphere 
0 = O e p  = constant. It is further shown that a zero rest mass field representing an 
unpolarized outward neutrino flux can be introduced into the system without disturbing the 
conformally flat nature of the space-time. As a consequence of the conservation laws a 
direct relation between the cooling rate per unit volume of matter and the energy density of 
the neutrino flux as measured by a radially moving observer is obtained. It is also shown that 
the outward neutrino flux contributes to the contraction of the star. The possibility of 
occurrence of a ‘gravitational bounce’ and a consequent oscillatory motion of the fluid 
particles of the sphere is also pointed out. 

1. Introduction 

Theoretical studies about the gravitational collapse of massive bodies have attracted 
considerable attention in recent years. Historically, the problem was first considered 
by Datt (1938) and by Oppenheimer and Snyder (1939). It was assumed that the implod- 
ing object is uniform, spherically symmetric, without rotation and pressure, and initially 
at rest. The interior geometry of such an object is supposed to be described by the 
Robertson-Walker cosmological metric. They concluded that when all the thermo- 
nuclear sources of energy are exhausted a sufficiently heavy star will collapse freely 
under the influence of its own gravitational field. 

Nearly a quarter of a century later the discovery of star-like objects with intense 
radio/optical emission which demand energy sources of the order of lo6’ erg (which 
is the rest energy of lo6 suns) led several authors including Bondi (1964), Misner and 
Sharp (1964), May and White (1966), McVittie (1966), Thompson and Whitrow (1967, 
1968) to introducing more physically tenable conditions into this idealized problem. 
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In addition to these works recently Vaidya (1968) obtained a class of nonstatic solutions 
representing fluid spheres and possessing the property that the four dimensional stream- 
lines are orthogonal to the hypersurfaces p = constant. This class includes as particular 
cases the well-known Schwarzschild solution with constant density and that of 
Oppenheimer and Snyder (1939). 

Since the problem of gravitational collapse is essentially a problem of energy release 
it is necessary to consider situations where a spherically symmetric star emits during 
gravitational collapse a non-negligible fraction of its mass as neutrino radiation. 
Although the dynamics of such a collapse are more complicated, notable contributions 
in this direction have already been made by Bondi (1964), Misner (1965), Vaidya (1966) 
and others. In this case the fluid does not obey a simple adiabatic equation of state 
but each element of the fluid will cool by emission of neutrinos at some rate determined 
by its temperature and density. The mechanism of neutrino flux is simplified by assuming 
that all the neutrinos move radially outward when emitted and that they are neither 
scattered nor absorbed by the surrounding matter. 

In the present paper the dynamics of spherical gravitational collapse is very much 
simplified by introducing the eigenvalue of the conformal Weyl tensor in the 2 - 2  
component of the Einstein tensor. It is known (Krishna Rao 1966) that the Weyl 
tensor of a general spherically symmetric space-time is of type D in Petrov's classifica- 
tion and therefore, there is only one independent eigenvalue which is real. The 2--2 
component of the Einstein tensor for spherically symmetric space-times can be written 
with the help of this eigenvalue and the geometry takes a very simple form. Also, since 
the Weyl tensor, having all the symmetry properties of a vacuum Riemann tensor, is to 
be thought of as representing the free gravitational field (Szekeres 1966), its eigenvalue 
may be interpreted as the energy density of the free gravitational field. It would indeed 
be seen that this energy density coupled to the material energy density acts in a way 
similar to the mean density of matter filling the sphere. 

2. Description of the gravitational field 

To give an analytic description of the gravitational field of a nonrotating star, we must 
first choose a coordinate system and then give relative to that coordinate system, the 
metric tensor g,, which determines the geometry of the space-time. We choose the 
Schwarzschild type of coordinates and the metric immediately takes the form 

ds2 = -e' dr2 - r2(d02 + sin20 d4') +e" dt2 (1)  

where A and v are functions of r and t only. Using relativistic units (G = 1, c = 1 )  and 
denoting partial differentiation with respect to  r and t by a prime and a dot respectively, 
the nonvanishing components of the energy-momentum tensor obtained through 
Einstein's equations are 
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where 

871~ = $e-''{22+(31-+)3L) +(1 -e-')r-2-~e-'{2v"+v'(v'-A') 

+ 2(A' - v')r- '} 

is the eigenvalue of the Weyl tensor in Petrov's classification as shown by Krishna Rao 
(1966). (The factor 8n is introduced for later convenience.) Since t is a scalar, the 
equations (2H5) contain explicitly only first derivatives of A and v. 

3. The energy-momentum tensor 

In order to give a physical significance to the equations (2H5), we introduce purely 
locally minkowskian coordinates (x, y, z, T) by 

dx = e''' dr dy = r d 8  dz = r sin 8 d 4  dz = eVi2dt 

A and v being treated as constants. Designating the minkowskian components of the 
energy tensor by a bar, we have 

T i  = T i  T i  = T i  7: = T: 

T: = T: Ti4 = T,,exp{ -&A+v)}. 

Next we suppose that when viewed by an observer moving relative to these coordinates 
with a velocity w in the radial (x) direction, the physical content of the space-time 
consists of: 

(i) an isotropic fluid of density 1 and pressure p;  
(ii) isotropic radiation of energy density 3 4 ; 
(iii) unpolarized neutrino flux of energy density b travelling in the radial direction. 

When viewed by this moving observer, the covariant energy-momentum tensor in 
minkowskian coordinates is thus 

0 

0 0 1+34+8  

(6) 

(7) 

(8) 

(9) 

where p = + 34, p = fi  + (2, a = b(l + w)/(l- w) and w = exp{&A - v)} (drldt). Here a 
is the energy density of neutrinos in the rest frame of the fluid and w tells us how the fluid 
of the sphere moves. Since 4 occurs only in these combinations, we can from now on 
work with only four quantities p, p ,  a and w. 

I* h + 4 + 8  0 0 

0 h + 4  0 

0 0 h + 4  
-8 

T i  = T i  = -(pw2+p)(l-w2)-'-a 
2 - T2 - T3 - T:  = - p  

I 
A Lorentz transformation readily shows that 

T 2 -  2 -  3 -  

T: = TI = ( p + p ~ ~ ) ( l - ~ ~ ) - ' + ~  

Ti4 = T14exp(&A+v)} = -exp{+(A+v)}{(p+p)w(l-w2)-'+a} 
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Now from ( 2 x 4 )  and ( 6 x 8 )  we readily obtain 

e-’ = 1--(p+c)r 871 2 

3 

Comparing this expression for e-’ with the one obtained by Bondi (1964), we get 

471 
m(r, t )  = - ( p  + E)r3 3 

where 

m(r, t )  = (471r2 dr)Tz J: 
is the mass contained within a coordinate radius r of the fluid sphere and the integration 
being performed for constant t .  The expression for m(r, t )  given by (11) shows that 
( p  + E) plays the part of the mean density of matter within a coordinate radius r of the 
sphere. From (10) it can be seen that a singularity at  the origin r = 0 may be avoided 
only when ( p +  goes as a power of r higher than inverse square. The coupling of E 

with the material energy density p suggests that the former may be interpreted as the 
energy density of the free gravitational field. In the case when the paths of the fluid 
particles are geodesics, the force distribution of this free gravitational field has the effect 
of distorting a sphere into an ellipsoid which has the r direction as the principal axis and is 
degenerate in the 8, C#I plane (Szekeres 1965). When E = 0, the Weyl tensor vanishes 
identically and the space-time is conformally flat. The space-time describing the 
nonstatic generalizations of the Schwarzschild interior solution obtained by Vaidya 
(1968) is conformally flat. We shall discuss this case in detail in the later sections. Now 
the equation (2) may be used to determine v on each t = constant hypersurface. 

By a slight rearrangement of (9) and substituting from (4), (5) and (lo), the energy 
equation takes the form 

dr 
dt 

= -471r2(p-cr)--471r2 exp{fiv-A)}o (13) 

where 

is the differentiation operator following the fluid. This shows how the total pressure 
(fluid and radiation) does work on a material sphere across its moving boundary and as 
Bondi pointed out if one remembers that exp{fiv-A)} is the velocity of light in our 
coordinate system, the last term gives the neutrino flux over a two sphere of coordinate 
radius r .  The advantage of (13) over similar expressions given by Bondi (1964) and by 
Misner (1965) is that the part played by the energy density of the free gravitational field 
during collapse has been brought to notice. 

Note that we have a full set of four equations for the determination of the four 
physical variables p ,  p ,  cr and w .  For any given pair of values of A and v we can write the 
physical variables as 

8np = - 8 n ~ + 3 r - ’ ( l - e - ~  ) (14) 

8np = - 8 ~ c + r - ~ ( l - - e - ~ ) - r - ~  ecA(A’-v‘) (15) 
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The totality ofphenomena that can be described by (14) to (17) is very large. However, 
if we wish to find A and v explicitly we must assume two relations between pressure, 
density and the cooling rate per unit amount of matter. Any explicit interior solution 
thus obtained can be matched with Vaidya’s (1951, 1953) exterior radiating Schwarzs- 
child solution over a moving boundary say, r = a(u), U being the retarded time. 

4. The metric form for the case c = 0 

For the discussion of spherically symmetric material distributions in the absence of the 
free gravitational field (E = 0), it is convenient to choose the metric in the conformally 
flat form. The advantages of such a choice are (i) the light geometry inside a star is that 
of the flat Minkowski continuum, (ii) relativistic stellar structure at least in its kine- 
matical aspect forms a link between special relativity and gravitation, and (iii) the number 
of unknown functions in the metric tensor reduces to one and hence it is easy to handle. 
Further, imposing the condition of spatial isotropy the four dimensional riemannian 
manifold describing the interior geometry of a star is given by the metric 

ds2 = u - ~ ( R ,  T)qab dx“ dXb 

gab dx” dxb = dT2 - dR2 - R2(dO2 + sin2e d@) 

where R ,  8, (b are the spherical polar coordinates of euclidean space. 
I t  should be noted here that it is quite unnecessary to suppose that the star is spatially 

homogeneous in the sense that matter at every depth has the same thermodynamic 
functions. In fact the diffusion of neutrinos from the centre of the star towards the outer 
layers makes any assumption of homogeneity inappropriate. 

The nonvanishing components of the energy-momentum tensor T,b for the metric (18) 
obtained through Einstein’s field equations are 

where the subscripts 1 and 4 after a denote differentiation with respect to R and T 
respectively. 
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By an appropriate modification of the scheme given in 9 3 and using (19) we im- 
mediately obtain 

5. Conservation laws 

It is convenient, for the discussion of conservation laws, to write the energy-momentum 
tensor given in 0 3 as 

Tab = ,vab+ivab (24) 

Mab = ( p  + p)uaub - pgab 

U 1  
U *  = 0 113 = 0 U' = 

u,ua = 1 

Nub = akakb k,k" = 0. (26) 

Here M a b  and Nab are respectively the matter (perfect fluid) and neutrino energy-- 
momentum tensors. The matter conservation law is expressed in the form ofthe equation 
of continuity 

(nu'):, = 0 (27) 

where n is the baryon number density. Since the neutrino emission decreases the internal 
energy of matter, following Misner (1965), we introduce the cooling rate per unit amount 
of matter C(F, n),  F being the temperature. Then nC is the cooling rate per unit volume 
in the rest frame of the fluid and we can write the equation governing the neutrino flux as 

(28) 

since the total stress-energy tensor Tab satisfies the local energy and momentum con- 
servation laws 

-UaMab;b = nC = U a N a b ; b  

Tab:b = 0. (29) 

As a consequence of (29), through (28), we get 

( p  + p ) U a ; b U b  = (gab - U a U b ) p , b -  N o b i b  + nCU" 
In view of 

k,NUb = 0 ka,,NUb = 0 

we get the identity 

k,NUb;, = 0. 
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In the present case - k ,  = k4, k ,  = k 3  = 0, and it follows from (31) that 

(32) N l b  ; b  - - N 4 ’ ; b .  

Therefore, we get from (28) by making use of (32) 

N’b;b  = anC ( - ;:y2* (33) 

Of the four equations in (30) two (for a = 2,3) are satisfied identically and the 
remaining two after making use of (32) and (33) combine into a single equation which 
reads as 

In a comoving coordinate system (w = 0) this equation of hydrodynamics looks like a 
simple hydrostatic balance of forces. 

6. Slow collapse 

For slow gravitational collapse the neutrino production vanishes and we write 8 in 
place of cr and an overhead suffix ‘0’ for p, p ,  w in the foregoing analysis. The differential 
equation for is readily obtained from c = 0 

A first integral of this equation is 

-T+j4  81 =f ig )  
R 

f being arbitrary. It may be pointed out here that the cosmological solutions of Infeld 
and Schild (1945) as well as Schwarzschild’s interior solution are particular solutions of 
(36). 

In view of (35) the expression for ii, written from (23) takes a very simple form 

Now it can be verified that : 

(i) the stream lines of the fluid are orthogonal to the hypersurfaces 
b(R, T )  = constant, that is 

b , ,  +SI,, -= 0. (38) 

@+P)P-’(S+,, +ii,,4)(1 - i i2)-1+{(b+P)8-1},1+S{(b+P)p-1},4 = o 
(ii) In view of (37) and (38) the conservation equation for matter written from (34) as 

(39) 
turns out to be an identity. (This can also be seen from the fact that we have four 
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independent components of the energy-momentum tensor for the determination 
of the four unknown quantities 8, p, 6 and P . )  

Finally, the rate of contraction of the fluid sphere is given by 

From the expression for P it may be readily verified that 

and hence 

U = 0 - g  = constant. 

7. Collapse with neutrino emission 

It is easy to see from (6H9) after making the necessary modifications that G does not 
enter the expression for w( = (T: - T: - Ti)/( Tz  + T: - T:) )  and hence without loss of 
generality we assume that t\l = G. Therefore 

where P satisfies (36). From (40) the relation between x and ,6 is given by 

a = P + F + R F '  (31 1 

F being an arbitrary function of the retarded time 14 EE T - R  and a prime on F denote5 
differentiation with respect to U. Hence we have the following result. 

Given any perfect fluid solution of Einstein's field equations with a conformally flat 
metric of the form 

(421 

one can always include the presence of a neutrino energy-momentum tensor. ak,kb. 
k,k" = 0, without disturbing the conformally flat nature of the space-time. That is. the 
new metric is given by 

143) 

Thus, F(u)  being arbitrary, for any given P one obtains a family of solutions. I t  may be 
mentioned here that the analytic solutions for gravitational collapse with radiation 
obtained by Vaidya (1966) are particular cases of the above general result (Pate1 1969). 

When expressions (20) and (21) are written in terms of F and P,  by making use of (41 ). 
one notices that 

ds2 = 8-2qob dx" dXb 

ds2 = (P + F + RF')- 21j,b dx" dxb. 

r P 
P + P  P + F  
-~ - ~ - 

and a takes a very simple form 

4x0 = R(P + F + RF' )F" ' .  

(44) 

145) 
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In view of (37)-(39), (44), (45) the conservation equation (34) turns out to be a direct 
relation between the cooling rate per unit volume of matter nC and the energy density of 
neutrino flux 8 as measured by a radially moving observer 

Also the rate of contraction of the fluid sphere is 

To understand the nature of uaa{ (F /R)+  F') /ax" we consider a star which is initially 
static, for example the Schwarzschild interior solution, for which = 0. Then 

2 a { ( F / R )  + F ' )  
U = -(:) U" 

and remembering that 47~(R/a)~ is the surface area of the 2-space R = constant, 
T = constant (which is indistinguishable from an ordinary sphere of radius R/a), the 
presence of the factor @/a)' on the right hand side of the above expression is significant. 
Now for contraction, U < 0 (for expansion U > 0), u'a((F/R)+F'}/dx" > 0 (<O) .  It 
may be mentioned here that if ( ( F / R ) + F ' )  is a periodic function 'gravitational bounce 
would occur'. 

Now in the general case for contraction to occur, U < 0 

and three cases arise 

Here both the material and neutrino forces contribute for contraction and the inequality 
(48) always holds good. Thus once the contraction sets in it continues till the star 
degenerates or shrinks into a point singularity. 

In this case the neutrino forces which favour contraction dominate over the material 
expansive forces. 

In this case the inequality (48) shows that if a star is contracting initially, it will continue 
to do so in spite of the expansive forces created by neutrino emission. 

8. Conclusion 

The introduction of the eigenvalue of the Weyl tensor into the scheme of spherical 
symmetry leads to a simpler geometrical outlook of the whole problem. The absence of 
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second derivatives of the metric potentials should prove helpful in numerical computa- 
tions. Also by avoiding evaluation of integrals for the mass m(r, t )  given by (12) some 
possible inconsistency that may arise in the initial value problem is eliminated. It will 
be shown elsewhere that the procedure adopted here is useful for the discussion of 
contraction of charged fluid spheres. 
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